
1 



Don‘t ask me why my nickname‘s Toflar. I remember having taken 6 letters on my keyboard 
and arranging them in random order because everything „cool“ was already taken at that 
time. And I was very young which also excludes any influence of alcohol...probably. Today I‘d 
probably choose „Yanick“ as my nickname, why not :-) 

2 



3 



4 



5 



6 



The directory "contao" contains all the files that are needed for the back end functionality 
such as 
 
• The back end entry file "main.php" 
• Javascript files 
• The install.php file 
• etc. 

 
You will never have to add anything to that folder for a custom module. 
 
 

7 



The directory "plugins" contains third party scripts that are used within Contao such as 
 
• chosen 
• mediabox 
• swiftmailer 
• tinyMCE 
• etc. 
 
In general you don't need to add anything in here. It's a question of design whether you add 
plugins you use for your extension to this folder or not. There's no convention although it‘s 
always a good move if you think of other third party developers and outsource the plugins 
into their own extension. This way other developers don‘t have to ship the plugin again but 
can rather add a dependency of your library (e.g. I have done this for „rapidmail_library“ and 
„rapidmail_sync_recipients“). 

8 



As you might guess from the name of this directory, "system" is the most important directory 
in Contao and we will thus look into this in more detail. 
 
We won't cover all of the directories because some of them are just directories files are 
cached in etc. Be creative, read the source and try to find out what Contao does! 

9 



The config directory contains the standard configuration files. There are also the local 
configuration files for your installation that go in here: 
 
• localconfig.php 
• dcaconfig.php 
• langconfig.php 
• initconfig.php 
• Your own tinyMCE config files 
• etc. 
 
Normally you won't have to add anything to that folder but you might consider this place to 
put a custom configuration file if you think that your extension has too many parameters for 
being reasonably managed in the back end settings. 
 

10 



The "drivers" directory is very important for Contao. You are using drivers whenever you are 
using Contao. There are two different types of drivers: 
 
• DataContainer drivers (start with "DC_") 
• Database drivers (start with "DB_") 
 
The database drivers provide a very primitive abstraction layer for the database so that you 
can use Contao also with PostgreSQL or other databases. 
 
We will see what a DataContainer is later on but if you develop your own DataContainers or 
database drivers - put them in here. 

11 



The „libraries“ directory contains some core functionality that can be used in your own 
modules. 
Make sure you know the libraries in here because they contain a lot of methods you will need 
in your own modules too. 
 
The core library‘s name is „Controller“. It‘s probably the class that provides the greatest 
number of methods all over the core and that‘s probably because Contao‘s grown that fast 
over the past years. Take a close look at it. 

12 



Simply put, this is where your extensions go! Every extension to Contao is a module and goes 
into "system/modules". 
 
We will learn more about the structure of a module later on but for now, just remember that 
they have to be installed into this directory. 
 
By the way: did you know that the back end and front end are just modules too? 

13 



When you happen to have a few minutes of spare time, also check out the functions.php. It 
defines some very useful, Contao-specific, functions that you can use in your modules. 
 
• scan() - to scan a directory for files 
• specialchars() - to convert special characters to HTML entities 
• standardize() - to convert a string to a "standardized string" (used e.g. for aliases) 
• deserialize() - to unserialize a serialized string with some additional features 
• array_insert() – to insert an array at a certain index of another array (quite useful!) 
• ... 

14 



This is the file that is included by Contao to bootstrap the system. Normally you don‘t need it 
but knowing what it does and what components get loaded in what order is always useful! 
 
Not only will it give you a better understanding of how Contao works but also will it help you 
debugging your code. 
 
Some extensions provide other interfaces to Contao‘s index.php such as Andreas Schempp‘s 
„ajax“ extension or my „swekey“ module. Both include the initialize.php to bootstrap the 
system other than via the index.php. 
Probably you‘ll need to do that one day too. 
 

15 



I hope I don't need to mention that the index.php file is the one that is initially called by the 
browser when a user visits your page. 
 
Also take the time to check this file. You will see that it includes the "initialize.php" file we 
have seen before. 
 
Just make sure you roughly know what it does so you aren't lost when you stumble across 
funny error messages. 

16 



17 



18 



19 



20 



A method is worth a thousand words. 
Let‘s say the DataContainer for the table „tl_news“ is being loaded. You can see that Contao 
checks every module for a file that is called „dca/tl_news.php“ and loads this. Then it calls a 
hook (we will see what this is later on) and eventually includes the dcaconfig.php which is 
one of the configuration files we saw before (remember, the ones within „system/config“). 
 
Because every DCA is just a global array, every module can extend and modify the array as it 
likes. But let‘s see how such a DCA looks like. 

21 



Every DataContainer Array (DCA) is defined into the global array „TL_DCA“. This way it is 
possible to modify the array in whatever scope you‘re currently working. 
 
You can see that the table „tl_news“ defines a DataContainer „Table“ that is responsible for 
displaying your data. Yes, you are right. This is the driver „DC_Table“ we saw before and now 
you can also see how flexible Contao is. 
Just write your own „DC_Whatever“ and set „dataContainer“ to „Whatever“ and you‘re 
ready to go and define your own back end look and feel. 
 
„ptable“ is an example for a table relationship. It tells Contao that a „tl_news“ entry belongs 
to a parent entry in „tl_news_archive“ and we all know that‘s true. Every news entry belongs 
to a news archive. 
The callbacks are extremely useful but we will see that later on. 

22 



Here we can define how the DC_Table should list our entries. Remember: Everything we 
define in this DCA has to be supported by the DC_Table. If you use your own DC_Whatever 
then you have to either implement all this configuration or use your own definitions. 
 
You can see that there are several sorting modes and global_operations (such as „all“ which 
is the „edit multiple“ button) as well as operations which are listed for every record (edit, 
delete, copy etc.). 
 
Go and see the reference (http://www.contao.org/en/reference.html) for more info. 

23 



This is an extract from contao.org: 
 
A palette is a group of form fields which are required to edit a record. A palette typically does 
not include all columns of a table but only the ones that belong to a particular module or 
content element. Palettes can change dynamically depending on the user's permissions or 
type of element and certain subparts of the form (called subpalettes) can be loaded 
interactively via Ajax. 
 
In this case you can see that we have a „default“ palette that adds a few fields and groups 
them into legends. 
The „addImage“ field for example is a „__selector__“ which means that it is a field that is 
responsible for changing either a palette or loading a subpalette. In this case we can see that 
„addImage“ is defined within the „subpalettes“ array. So when I change the „addImage“ 
field, a subpalette containing the fields singleSRC, alt, size, imagemargin, imageUrl, fullsize, 
caption and floating is being loaded using Ajax. 

24 



Okay. So now let‘s define how our fields (columns) look like. As you can see from the sql 
definition on the slide, the fields are always named after the column name in the database. 
We will see how modules define what database tables and columns they need when we look 
into the structure of a custom module. 
 
For now just check how the field is defined within the DCA. 
There‘s a label with the reference to a language array so the descriptions can be translated 
and a lot of other stuff. 
„inputType“ defines the form field widget which can be a normal text field like for the 
headline or a „pageTree“ for a page picker etc. Again you have all the flexibility and you can 
define your own widget/inputType. 
 
Also note the „eval“ array which configures a field in detail. Check the documentation on 
contao.org: http://www.contao.org/en/reference.html#evaluation 

25 



26 



A custom module almost always has the structure presented on this slide. Obviously you 
might have other directories for plugins you use or something similar and you don‘t 
necessarily need to have all of these folders for every module. 
It depends on what you want to develop. 
 
We will see what goes into the directories on the following slides. 
 
Note that the Contao autoloader will load all the classes located in the module root 
automatically so that‘s why our classes „ContentInputOutput.php“, „InputOutput.php“ and 
„ModuleInputOutputList.php“ are in the module root. 
 
 

27 



The „.htaccess“ denies direct access to the module via the webserver. You‘ll find it in all 
folders within a module except for those where people need to have access to (css files, 
images etc.). 
 
The „config.php“ contains the configuration of your module. The main concept behind the 
config.php is that all the config.php files of all the active modules get loaded when Contao is 
being initialized before anything else is done. 
This means that we can configure all the configuration items that Contao is going to use such 
as 
 
• register/unregister back end modules 
• register/unregister front end modules 
• register/unregister content element tymes 
• register/unregister back end and front end form field types 
• register/unregister hooks 
• register/unregister page types 
• etc. 

 
 

The „database.sql“ contains the modifications on the database that are needed for our 
module to work. 
 
The „runonce.php“ file is very useful. It‘s going to be included and thus executed only once 
and deleted afterwards. You can use this to provide update routines for your rmodules (e.g. 
database modifications or file adjustments). 

 

28 



The „dca“ directory is the directory where we put our DCA modifications. As we have seen 
before, Contao checks all the module folders for the corresponding DCA files within this 
folder when a DataContainer is being loaded. 
 
I put „tl_content“ and „tl_module“ here because you will have to modify them quite often. 
The „tl_content“ table is the table where content elements are being stored in and the 
„tl_module“ does the same for the front end modules. 

29 



The „html“ folder is a resource directory. You can put your javascript, css and image files in 
here. The folder doesn‘t necessarily have to be named „html“ but it has become best practice 
amongst Contao developers. 
So it‘s some kind of convention ;-) 

30 



The „languages“ directory contains the translations for everything within the module you 
want to have translatable. 
The clever ones amongst you have already noticed that we have the table names for the DCA 
here again. That‘s right. They‘re automatically loaded when a DataContainer is being 
initialized. 
 
The other two files are pretty easy: 
 
• „default.php“ is always included so you can specify things that have to be available 

everywhere in here such as error messages or more general things like „yes“, „no“, 
„probably“ etc. 

• „modules.php“ contains the translations for the back and the front end modules. 

31 



This is something everybody who reads this presentation should know about: templates. 
 
Here you can define your own templates for your modules or content elements. Obviously 
you can also override core templates here. 
Again there‘s no convention to name a template after a particular pattern but we do begin 
with „mod_“ for module templates and with „ce_“ for content elements. 
You just endear yourself to the other developers if you do ;-) 

32 



33 



If I had to define the difference between a hook and a callback I‘d say they both provide an 
interface so that other code can extend the functionality at a certain point in the code but 
whereas a callback requires a return value, a hook doesn‘t. 
 
 
But my definition doesn‘t matter. In Contao they‘re both merely the same. Some expect a 
return value, others don‘t. 
But the real difference betwenn them is that callbacks are used within a DCA and hooks all 
over the core. 

34 



35 



In contrast to the callbacks, hooks aren’t registered in a DCA file. This (to me) seems quite 
obvious as DCA files are only loaded when needed and only in a DC view in the back end. 
Hooks, however, are spread all over Contao and are not limited to the DC. Therefore they 
have to be registered in the config.php file of the respective module. 

36 



37 



38 



39 


