

Inside TYPOlight

Overview

● Part 1: TYPOlight folders

● Part 2: TYPOlight framework

● Part 3: Libraries

● Part 4: Life cycle of a front end request

● Part 5: Data container arrays

● Part 6: Customizing TYPOlight

Part 1: TYPOlight folders

Part 1: TYPOlight folders

● plugins

● system

● templates

● tl_files

● typolight

● system
● config

● drivers

● html

● libraries

● logs

● modules

● themes

● tmp

Part 1: TYPOlight folders

● plugins
● External scripts that are used system-wide (TinyMCE, MooTools,

SWFobject, phpmailer etc.)

● templates
● Custom templates, include files, SQL dumps

● The folder is not touched by the live update script

● tl_files
● Central file management

● typolight
● Administration area in a subfolder allows for additional protection

via .htaccess file

Part 1: TYPOlight folders

● system/config
● Central storage location for configuration files

● system/drivers
● Mixture between controller, model and view (e.g. DC_Table.php)

● Database adapters (e.g. DB_Mysql.php, DB_Oracle.php)

● system/html
● Cache directory that is accessible via HTTP (e.g. thumbnails)

● system/libraries
● Libraries abstract various tasks like database communication, file

operations (SMH), safely retrieving user input, sending e-mails,
calculating dates etc.

Part 1: TYPOlight folders

● system/logs
● Storage location for log files (not accessible via HTTP)

● system/modules
● Central storage location for modules

● Even the back end itself is “just” a module

● The core can be extended by any functionality

● system/themes
● Storage location for back end themes

● system/tmp
● Cache directory that is not accessible via HTTP

Part 2: TYPOlight
framework

Part 2: TYPOlight framework

● TYPOlight and MVC
● MVC = Model-View-Controller

● MVC elements exist in TYPOlight

● Still it is not a classic MVC framework

● Deviation list
● Models are only used for users

● Drivers are a combination of controller, model and view with
extended CRUD functionality (create, read, update, delete)

● Back end views (e.g. forms) are being rendered automatically

● No typical URI routing in favor of search-engine-friendly URLs in
the front end

Part 2: TYPOlight framework – Models

● Models
● Only implemented for users in TYPOlight
● $this->import('BackendUser', 'User');

echo $this->User->isAdmin; // False

$this->User->admin = 1;
$this->User->save();

echo $this->User->isAdmin; // True

● Models only play a minor part, because the goal was to program
comprehensive drivers that can create different views and process
forms on the basis of meta informations

● Instead of creating a model, a controller and several views for
every table, the driver is supposed to cover it all automatically

Part 2: TYPOlight framework – Views

● Views
● Layouts (e.g. fe_page)

● Views (e.g. mod_newslist)

● Partials (e.g. layout_short)

● The “TYPOlight vocabulary” does not draw this distinction; the
term “template” is used for all kinds of views

● Loading views
● TYPOlight searches the “templates” folder first

● Then all active modules

● First hit wins (if the template e.g. exists in the “backend” module,
another template with the same name in the “news” module will
never be loaded)

Part 2: TYPOlight framework – Views

● Parsing views
● Template::parse() loads a view

● replaces the wildcards within it

● returns the result as string

● Outputting views
● Template::output() loads a view

● replaces the wildcards within it

● executes additional actions

● prints the result to the screen

Part 2: TYPOlight framework – Views

● BackendTemplate::output()
● Loads the rich text editor configuration

● Inserts the dynamic JavaScript and CSS files

● Executes the “outputBackendTemplate”-Hook

● Adds the copyright notice

● Checks and enables the GZip compression

● Sends the HTTP headers

● Outputs the XHTML code

● Prints the debug information (if active)

Part 2: TYPOlight framework – Views

● FrontendTemplate::output()
● Generates the search index URL

● Reads the article keywords

● Executes the “outputFrontendTemplate”-Hook

● Stores the cache file and sends the cache header

● Replaces the insert tags (if active)

● Adds the file to the search index (if active)

● Inserts the copyright notice

● Checks and enables the GZip compression

● Sends the HTTP header

● Outputs the XHTML code

● Prints the debug information (if active)

Part 2: TYPOlight framework – Views

● Dynamic scripts
● TL_CSS: Allows you to add CSS files

● TL_JAVASCRIPT: Allows you to add JavaScript files

● TL_HEAD: Allows you to add individual code
● $GLOBALS['TL_CSS'][] = 'system/modules/news/style.css';

● Automatic back end views
● List view: Lists the records of a table

● Parent view: Lists the child records of a parent record

● Tree view: Lists hierarchical records as a tree

● Automatic form rendering saves us from having to create a
separate view for every table and every action

Part 2: TYPOlight framework – Controller

● Controller functionality (CRUD)
● list(): Lists all records

● show(): Lists a single record

● create(): Renders a form to create a new record

● save(): Saves a new record

● edit(): Renders a form to edit an existing record

● update(): Updates an existing record

● delete(): Deletes a record

Part 2: TYPOlight framework – Controller

● Additional TYPOlight driver functions
● cut(): Moves a record

● copy(): Duplicates a record

● deleteAll(): Deletes multiple records at once

● editAll(): Edits multiple records at once

● undo(): Restores a deleted record

● Restoration of former versions of a record

● “Virtual controller”
● At run time, a virtual controller is created on the basis of the DCA

configuration, which takes care of rendering forms, validating user
input and saving data to the database

● Offers more functionality than a CRUD controller

Part 3: Libraries

Part 3: Libraries

System

Model Controller

User Backend Frontend Template Widget

BackendUser
FrontendUser

Ajax
Automator

DataContainer
…

ContentElement
Hybrid
Module

PageRoot
PageRegular

…

BackendTemplate
FrontendTemplate

CheckBox
FileTree

PageTree
RadioButton
SelectMenu

TextArea
TextField

…

• System architecture

Part 3: Libraries – System

● Base class „System“
● Contains system-wide methods

● import() instantiates other objects

● log() adds an entry to the log table

● reload() reloads the current page

● redirect() redirects to another page

● parseDate() returns a formatted date

● setCookie() writes a cookie

● Advantages of System::import()
● Detects Singletons automatically

● Checks whether an object already exists

Part 3: Libraries – Controller

● class Controller extends System
● getFrontendModule() returns a front end module

● getArticle() returns an article

● getContentElement() returns a content element

● resizeImage() generates a thumbnail in system/html

● printArticleAsPdf() exports an article as PDF file

● replaceInsertTags() replaces insert tags

● sendFileToBrowser() triggers the “save as …” dialogue

● getFrontendUrl() generates a front end URL

● removeOldFeeds() removes deprecated XML files

● …

Part 3: Libraries – Controller

● class Backend extends Controller
● getBackendModule() returns a back end module

● getSearchablePages() returns all searchable pages

● createPageList() returns the pages as drop-down menu

● createFileList() returns the files as drop-down menu

● class Frontend extends Controller
● getPageIdFromUrl() returns the ID of the current page

● getRootIdFromUrl() returns the ID of the current root page

● jumpToOrReload() reloads the page or redirects to another one

● getLoginStatus() checks whether a user is logged in

● parseMetaFile() parses a “meta.txt” file

Part 3: Libraries – Database abstraction

● Database abstraction
● SQL92 standard as common denominator

● Only specific functions like LIMIT are encapsulated in extra
methods which are defined per adapter

● Thus, the interface remains uncomplicated and flexible
● $db = $this->Database;

$stmt = $db->prepare('SELECT * FROM tl_user WHERE name=?');
$stmt->limit(1); // Inconsistent, therefore encapsulated
$user = $stmt->execute('Theo Test');

while ($user->next())
{

echo $user->name;
}

● Easy access to the fields of the result set

Part 3: Libraries – Database abstraction

● Advantages of the DB abstraction library
● Supports complex queries like joins or subqueries

● Automatic escaping prevents SQL injections

● Lazy initialization of result sets

● Consistent and database-independent interface

● Restrictions of the DB abstraction library
● No abstraction layer to create and modify tables

● The abstraction library does not provide for the special
requirements of BLOB/CLOB fields in Oracle

● Only MySQL is in fact completely supported

● No control whether a programmer abides by the SQL92 standard
(it is possible to write specific queries)

Part 3: Libraries – File operations

● File permissions and the Safe Mode Hack
● PHP as an Apache module typically runs under the user

“wwwrun”, “nobody” or “www-data”

● However, files that have been uploaded via FTP typically belong
to the FTP user (e.g. “web5” or “xa2387”)

● The server denies the PHP process (and thus TYPOlight) access
to the supposedly alien files

● Solutions
● Run PHP as CGI with suPHP

● Run the PHP process under the same user who owns the files
that have been uploaded via FTP

● Execute file operations via FTP (Safe Mode Hack)

Part 3: Libraries – File operations

● Abstraction layer „Files“
● Depending on the configuration settings, the Files library loads a

PHP or FTP adapter to modify files

● mkdir() creates a new directory

● rmdir() removes a directory

● fopen() opens a file

● fputs() writes to a file

● fclose() closes a file

● rename() renames a file or folder

● copy() duplicates a file or folder

● delete() deletes a file

● chmod() changes the access rights of a file or folder

Part 3: Libraries – File operations

● File modification via “Files”
● Works similar to the native PHP functions
● $this->import('Files');

$fh = $this->Files->fopen('system/tmp/test.txt', 'wb');
$this->Files->fputs($fh, 'This is a test.');
$this->Files->fclose($fh);

● File paths have to be relative!

● Easy operation via “File” and “Folder”
● Utility classes to modify files or folders

● Supports creating folders recursively

● Provides file information like path, extension, access time, width
and height or MIME type

Part 3: Libraries – Security in TYPOlight

● Security in TYPOlight
● Input library encapsulates reading user input

● Step 1: HTML entities are being decoded

● Step 2: Unicode entities are being decoded (XSS prevention)

● Step 3: JavaScript snippets are being removed (in „strict mode“ all
event attributes are being removed as well)

● Step 4: Disallowed HTML tags are being removed

● Step 5: Potentially dangerous characters are being encoded

● Additional XSS protection
● Do not add the <script> tag to the list of allowed tags

● Otherwise it is possible to embed JavaScript in all HTML fields

Part 3: Libraries – Security in TYPOlight

● Reading the server environment
● The Environment library allows you to read the server

environment independently from the operating system

● Potentially dangerous code is being removed (e.g.
$_SERVER['HTTP_USER_AGENT'] can contain JavaScript code)

● Securing forms
● If a form is being submitted, TYPOlight checks whether it actually

comes from the same site (referer check)

● Some anonymizers and security tools hide the referer address
which leads to an error message in TYPOlight

● If the referer check is being disabled (never recommended), all
forms should at least contain a security question (Captcha)

● A captcha additionally protects you against spam

Part 3: Libraries – Security in TYPOlight

● Login and authentication
● A TYPOlight session is bound to the PHP session and the IP

address of the user

● IP binding can be disabled in version 2.7 (not recommended)

● Active sessions are stored in the database

● The cookie only contains a checksum and no relevant data like
expiration time, ID or other user information

● Recall extension allows for persistent logins in the front end

● Switching accounts and previewing the front end
● The implementation supports session switching

● Administrators can switch to other users (both in the back end as
well as in the front end preview)

Part 3: Libraries – Security in TYPOlight

● Storing encrypted data
● Every field can be stored encrypted

● Configurable in the data container array
● $GLOBALS['TL_DCA']…['eval']['encrypt'] = true;

● Encryption requires an encryption key that is set up during the
installation process (once data is encrypted, it can only be
decrypted with this key!)

● Requires the PHP module “mcrypt”

● Encryption in the TYPOlight core
● Encryption is not being used in the core so far

● Custom modules that store sensitive data (e.g. credit card
information) should use this feature

Part 3: Libraries – Widgets

● Widgets
● Widgets = form fields

● Standard fields like TextField, CheckBox, SelectMenu

● TYPOlight-specific fields like PageTree, FileTree or wizards

● Base class „Widget“
● Provides common functionality

● generate() returns a form field

● validate() validates the user input

● hasErrors() checks whether there have been errors

● getErrors() returns the error messages as array

Part 3: Libraries – Widgets

● Outputting widgets
● generateLabel() returns the label
● <label for=“ctrl_name“>Name</label>

● generate() returns the field
● <input type=“text“ id=“ctrl_name“ name=“name“ />

● generateWithError() returns the field with error message
● <p class=“error“>Please fill in the field.</p>

<input type=“text“ id=“ctrl_name“ name=“name“ />

● generateWithError(true) reverses the order
● <input type=“text“ id=“ctrl_name“ name=“name“ />

<p class=“error“>Please fill in the field.</p>

Part 3: Libraries – Widgets

● Outputting error messages
● getErrors() returns the error messages as array

● getErrorAsString() returns the first error message

● getErrorAsString(2) returns the third error message

● getErrorsAsString() returns all error messages as string,
separated by a line break (
)

● getErrorsAsString(', ') returns all error messages as string,
separated by a comma

● getErrorAsHTML() returns the first error message as HTML string
(<p class=“error“>…</p>)

● getErrorAsHTML(2) returns the third error message

Part 3: Libraries – Widgets

<!-- View (actually partial) -->
<?php echo $this->generateLabel(); ?>
<?php echo $this->generateWithError(); ?>

<!-- Output -->
<label for=“ctrl_name“>Your name</label>
<input type=“text“ id=“ctrl_name“ name=“name“ />

<!-- Output with error message -->
<label for=“ctrl_name“>Your name</label>
<p class=“error“>Please fill in the field.</p>
<input type=“text“ id=“ctrl_name“ name=“name“ />

<!-- Reverse order → generateWithError(true) -->
<label for=“ctrl_name“>Your name</label>
<input type=“text“ id=“ctrl_name“ name=“name“ />
<p class=“error“>Please fill in the field.</p>

• Default view

Part 3: Libraries – Widgets

<!-- View (actually partial) -->
<fieldset>
<?php if ($this->hasErrors()): ?>
<p class=“flash“><?php echo $this->getErrorAsString(); ?></p>
<?php endif; ?>
<div>
 <?php echo $this->generateLabel(); ?>

 <?php echo $this->generateWithError(); ?>
</div>
</fieldset>

<!-- Output -->
<fieldset>
<p class=“flash“>Please fill in the field.</p>
<div>
 <label for=“ctrl_name“>Your name</label>

 <input type=“text“ id=“ctrl_name“ name=“name“ />
</div>
</fieldset>

• Complex example

Part 3: Libraries – Widgets

● Input validation
● Mandatory field: the field must not be empty

● Minimum length: must not contain less than n characters

● Maximum length: must not contain more than n characters

● Digits & letters: only digits and letters are allowed

● Date & time: only date and time formats are allowed

● E-mail address: input must be a valid e-mail address

● Phone number: input must be a valid phone number

● URL: input must be a valid URL or domain

● Percent: input must be a number between 0 and 100

● Individual regular expressions can be added using the
“addCustomRegexp” hook

Part 3: Libraries – Creating feeds

● class Feed extends System
● Getter and setter methods for properties

● addItem() adds a FeedItem

● generateRss() returns the feed in RSS format

● generateAtom() returns the feed in Atom format

● class FeedItem extends System
● Getter and setter methods for properties

● addEnclosure() adds an enclosure to the item

Part 3: Libraries – Creating feeds

<?php

$feed = new Feed();

$feed->title = 'TYPOlight user meeting 2009';
$feed->description = 'Information about the user meeting';

$item = new Item();

$item->title = 'Record participation';
$item->description = 'More than 70 participants!';

$feed->addItem($item);

echo $feed->generateRss();

?>

• Simplified example

Part 3: Libraries – Creating feeds

<?xml version=“1.0“ encoding=“UTF-8“?>
<rss version=“2.0“>
 <channel>
 <title>TYPOlight user meeting 2009</title>
 <description>Information about the user …</description>
 <link>…</link>
 <language>…</language>
 <pubDate>…</pubDate>
 <item>
 <title>Record participation</title>
 <description><![CDATA[More than 70 …]]></description>
 <link>…</link>
 <pubDate>…</pubDate>
 <guid>…</guid>
 </item>
 </channel>
</rss>

• RSS output

Part 3: Libraries – Periodic command scheduler

● Periodic command scheduler
● Automatic script execution in certain intervals

● Supports hourly, daily and weekly execution

● Does not support exact scheduling like cron jobs

● Can be used in custom extensions
● $GLOBALS['TL_CRON']['hourly'][] = array('Rates', 'update');

● Daily execution
● Recreation of the feed files

● Purging of the temporary directory

● Weekly execution
● Recreation of the style sheets and XML sitemaps

Part 3: Libraries – Periodic command scheduler

● Usage with a real cron job
● The PCM can be triggered by a real cron job

● Hourly execution of the cron.php file in the TYPOlight folder
● 0 * * * * php /home/www/typolight/cron.php

● Removing the triggers
● Layouts be_login.tpl and fe_page.tpl
● <!-- indexer::stop -->

<img src=“<?php echo $this->base; ?>cron.php“ … />
<!-- indexer::continue -->

● The three lines need to be removed completely

Part 4: Life cycle of a
front end request

Part 4: Life cycle of a FE request – Initialization

● __autoload()
● Classes are loaded automatically in TYPOlight

● The “libraries” folder is being searched first

● Then all modules folders

● Strict alphabetical order and no distinction between active and
inactive modules, because the Config object does not even exist
at the time the autoloader is defined

● DOMPDF_autoload (if installed)

● An exception is thrown if the class cannot be found

● Controller::classFileExists()
● Checks whether a class or class file exists

● Considers active and inactive modules

Part 4: Life cycle of a FE request – Initialization

● scan()
● Scans a folder for subfolders and files

● Like scandir(), but does not return '.' and '..'

● Built-in cache and open_basedir compatibility

● specialchars()
● Converts special characters into HTML entities

● Like htmlspecialchars(), but does not modify ampersands to
prevent double conversions (&amp;)

● deserialize()
● Reconverts a serialized array into an array

● Like unserialize(), but returns the argument in case of an error

Part 4: Life cycle of a FE request – Initialization

● trimsplit()
● Splits a string by a regular expression

● Like preg_split(), but additionally executes trim()

● ampersand()
● Converts all ampersands in a string into entities (argument true) or

single ampersand characters (argument false)

● natcaseksort()
● Extends the PHP function natcasesort()

● Allows you to sort an array by keys, using a case insensitive
"natural order" algorithm

Part 4: Life cycle of a FE request – Initialization

● array_insert()
● Inserts a value at a certain position within an array

● The value can be another array

● array_duplicate()
● Duplicates a certain array member

● The copy is added right after the original

● array_move_up()
● Moves a certain array member one position up

● Equates to exchanging two members

Part 4: Life cycle of a FE request – Initialization

● array_move_down()
● Moves a certain array member one position down

● Equates to exchanging two members

● array_delete()
● Removes a certain array member

● Recalculates the array keys

● array_is_assoc()
● Checks whether an array is associative

● If the keys are numeric and in a continuous ascending order, the
array is considered not to be associative

Part 4: Life cycle of a FE request – Initialization

● mbstring.php
● Substitute library for the PHP “mbstring” library

● E.g. required on Strato shared hosting accounts

● Provides functions to binary-safely modify international strings and
non ASCII characters

● Most important: utf8_strtolower() and utf8_strtoupper()

● php.ini customization
● Suppress session IDs in URLs (PHPSESSID)

● Define an error and exception handler

● Set the path to the error.log file

● Starting the PHP session

Part 4: Life cycle of a FE request – Configuration

● Loading the Config object
● The localconfig.php file is being loaded first to check whether

there are any inactive extensions

● system/modules/backend/config/config.php

● system/modules/frontend/config/config.php

● Then the configuration files (config.php) of the other active
extensions are being loaded in alphabetical order

● At last, the localconfig.php file is being loaded again to override
the default configuration with the local settings

● Inactive extensions
● Are neither searched nor initialized

● The more inactive extensions, the better the performance

Part 4: Life cycle of a FE request – Configuration

● Configuration arrays

● Back end modules
$GLOBALS['TL_CONFIG']['BE_MOD']

● Back end form fields
$GLOBALS['TL_CONFIG']['BE_FFL']

● Back end page types
$GLOBALS['TL_CONFIG']['TL_PTY']

● Front end modules
$GLOBALS['TL_CONFIG']['FE_MOD']

● Content elements
$GLOBALS['TL_CONFIG']['TL_CTE']

● Front end form fields
$GLOBALS['TL_CONFIG']['TL_FFL']

Part 4: Life cycle of a FE request – Configuration

● Loading the default objects
● Environment object to read the server environment

● Input object to process user input

● Further configuration
● Error_reporting is set according to the localconfig.php file

● The time zone is set according to the localconfig.php file

● The relative path to TYPOlight is calculated (if not set yet)

● The mbstring encoding is set according to the localconfig.php file

● The browser language is determined and stored

● Referer check
● Only if there is form data

Part 4: Life cycle of a FE request – Finding a page

● Loading pages from the cache
● TYPOlight looks for a cached version

● Checks the expiration time and outputs it if it is valid

● If the page is loaded from the cache, we are done

● All following steps can be saved by using the cache!

● Loading the FrontendUser object
● A database connection is being established

● The User object is only initialized at this point

● Neither authenticate() nor login() are executed

● Determining the login status
● Checks whether a back end or front end user is logged in

Part 4: Life cycle of a FE request – Finding a page

● Finding the page by the URL
● The ID or alias of the page is being extracted from the URL

● The corresponding page is loaded from the database

● And mapped to a website root page if the alias is not unique

● At last, the settings from the parent pages are inherited

● Authenticating the user
● The user session is validated on the basis of the cookie

● On protected pages, the user's permissions are validated as well

Part 4: Life cycle of a FE request – Loading a page

● Loading the page object
● Defaults to PageRegular (regular page)

● Loading the page layout
● Doctype Definition and meta robots tags

● TYPOlight CSS framework

● Dynamic scripts (CSS-/JavaScript, <head> tags)

● Google Analytics ID

● Loading the modules
● Order: header, left, main, right, footer, custom sections

● The article module loads articles and content elements

● The page title and description are being added at the end

Part 4: Life cycle of a FE request – Printing a page

● Outputting the page
● Template::output() prints the page to the screen

● The template object takes care of
● Adding the page to the search index

● Creating or updating the cache version

● Sending the HTTP headers

● Enabling the GZip compression

● Outputting the view

● (cp. Part 2: TYPOlight framework)

Part 5: Data
container arrays

Part 5: Data container arrays – Function

● Table meta data
● A data container array describes a table

● Table configuration, table relations, field configuration

● By this meta data, TYPOlight determines how to list/save records

● Back end forms are also rendered on the basis of this meta data

● Loading DCA files
● The DCA files of the active modules are loaded one after the other

(backend, frontend and then in alphabetical order)

● Every module can override the existing configuration

● The dcaconfig.php file is included at the end, loading local
modifications that are not touched by the live update

Part 5: Data container arrays – Structure

● Configuration
● Configuration of the table itself

● Relations to other tables

● Versioning

● Behaviour when data is edited or deleted

● Listing
● Defines how records are listed

● „List view“, „parent view“ or „tree view“

● Defines the default sorting order

● Filter configuration (search, filter, sort, limit)

Part 5: Data container arrays – Structure

● Operations
● Operations (e.g. edit or delete)

● Global operations (e.g. edit multiple)

● Access control via button callbacks

● Palettes
● A palette is a set of form fields

● Form fields can be grouped and aligned

● Only allowed fields are shown, so palettes can look differently
depending on the user's permissions

● Palettes can change dynamically e.g. depending on the type of
module or content element

● Subparts of the form can be loaded interactively via Ajax

Part 5: Data container arrays – Structure

● Fields
● Defines the specific table fields

● The input type determines the type of form field

● Evaluation
● Detailed field configuration

● Input validation (e.g. mandatory field or date field)

● Field size (e.g. rows and columns of a textarea)

● Field appearance (e.g. style)

● Rich text editor configuration

● Data encryption

● …

Part 5: Data container arrays – Callbacks

● onload_callback
● Part of the „configuration“ section

● Executed when the DataContainer object is initialized

● Allows you to e.g. check permissions or to modify the data
container array dynamically at runtime

● onsubmit_callback
● Part of the „configuration“ section

● Executed when a back end form is submitted

● Allows you to e.g. modify the form data before it is written to the
database (used to calculate intervals in the calendar extension)

Part 5: Data container arrays – Callbacks

● ondelete_callback
● Part of the „configuration“ section

● Executed when a record is being deleted

● Runs before the records are actually removed from the database

● paste_button_callback
● Part of the „listing“ section

● Allows for individual paste buttons

● E.g. used in the site structure to enable or disable buttons
depending on the access permissions

● Additional check via load_callback required, because the
command can still be entered directly in the URL!

Part 5: Data container arrays – Callbacks

● child_record_callback
● Part of the „listing“ section

● Defines how child elements are rendered in “parent view”

● From version 2.7, child elements can be moved via Drag & Drop
(e.g. content elements, format definitions, FAQs etc.)

● label_callback
● Part of the „listing“ section

● Allows for individual labels in the list

● E.g. used in the user module to add status icons to the user list
(administrator/user, active/inactive)

Part 5: Data container arrays – Callbacks

● button_callback
● Part of the „operations“ section

● Allows for individual navigation icons

● E.g. used in the site structure to enable or disable buttons
depending on the user permissions

● Additional check via load_callback required, because the
command can still be entered directly in the URL!

● options_callback
● Part of the „fields“ section

● Allows you to define an individual function to load data into a drop-
down menu or checkbox list

● Useful for e.g. conditional foreinKey-relations

Part 5: Data container arrays – Callbacks

● input_field_callback
● Part of the „fields“ section

● Allows for the creation of individual form fields

● E.g. used in the back end module “personal data” to generate the
“purge data” widget

● Attention: the field is not saved automatically!

● load_callback
● Part of the „fields“ section

● Executed when a form field is initialized

● Can be used to e.g. load a default value

Part 5: Data container arrays – Callbacks

● save_callback
● Part of the „fields“ section

● Executed when a field is submitted

● Can be used to e.g. add an individual validation routine

● The return value of the callback function is being saved, so it
should always be set!

Part 6: Customizing
TYPOlight

Part 6: Customizing TYPOlight

● Covered in the TYPOlight book
● How to create a custom TinyMCE configuration file and integrate it

into the data container array

● How to customize labels and store the changes update-safe in the
system/config/langconfig.php file

● How to customize data container arrays and store the changes
update-safe in the system/config/dcaconfig.php file

● How to create a custom extension that defines an additional field
and adds it to an existing table

● In this workshop
● Purpose of the different hooks

● How to extend classes and override methods

Part 6: Customizing TYPOlight – Hooks

● User registration
● createNewUser: executed when a new user registers at the front

end (the account can still be inactive)

● activateAccount: executed when a newly registered front end
account is activated

● setNewPassword: executed when a password is changed

● Login and logout
● checkCredentials: executed if the login fails due to a wrong

password (allows you to e.g. check against another database)

● importUser: executed if a user account cannot be found (allows
you to e.g. import users from an LDAP server)

● postLogin/postLogout: executed when a user logs into or off the
front end

Part 6: Customizing TYPOlight – Hooks

● Forms
● loadFormField: executed when a form field is loaded

● validateFormField: allows you to add an individual validation
routine to a form field

● addCustomRegexp: allows you to add an individual regular
expression to the widget validator

● postUpload: executed after a file has been uploaded in a form

● processFormData: executed after a form has been submitted

Part 6: Customizing TYPOlight – Hooks

● URL generation
● getPageIdFromUrl: allows you to add a custom routine to extract

the page ID from the URL

● generateFrontendUrl: allows you to add a custom routine to
generate front end URLs

● Templates
● parseBackendTemplate: parses a back end template

● outputBackendTemplate: outputs a back end template

● parseFrontendTemplate: parses a front end template

● outputFrontendTemplate: outputs a front end template

Part 6: Customizing TYPOlight – Hooks

● Miscellaneous
● getAllEvents: allows you to add a custom routine to query events

in a front end module

● getSearchablePages: allows you to add custom URLs to the
search index (URLs should point to valid pages)

● postDownload: executed after a file has been downloaded (e.g.
used in the download statistics extension)

● replaceInsertTags: allows you to add custom insert tags

Part 6: Customizing TYPOlight – Extending classes

● Customizing the navigation module
● The navigation module shall be modified to always display even if

there are no subpages, in which case a note shall be printed

● The functionality of the original class shall be preserved, so future
updates do not require maintenance

● Creating a custom extension
● Module folder “xcustom” (will be loaded last)

● Holds a file named ModuleMyNavigation.php

● Which defines the class ModuleMyNavigation

● Class ModuleMyNavigation extends class ModuleNavigation

● Only the generate() method will be overridden

Part 6: Customizing TYPOlight – Extending classes

<?php

class ModuleMyNavigation extends ModuleNavigation
{

public function generate()
{

// Execute the original method
$buffer = parent::generate();

if ($buffer == '')
{

$buffer = 'There are no subpages';
}

return $buffer;
}

}

?>

• class ModuleMyNavigation

Part 6: Customizing TYPOlight – Extending classes

● Registering the new class
● TYPOlight needs to know about the new class

● Therefore we override the global configuration array FE_MOD in
the system/modules/xcustom/config/config.php file

● $GLOBALS['TL_CONFIG']['FE_MOD']['navigationMenu']
['navigation'] = 'ModuleMyNavigation';

● Dynamic configuration
● Thanks to the dynamic configuration, TYPOlight automatically

loads the new class upon the next request

● The navigation module now prints the notice “There are no
subpages” instead of not showing at all

● The modification is update-safe and does not require maintenance

